152 research outputs found

    Performance comparison of automatic peak detection for signal analyser

    Get PDF
    The aim of this paper is to propose a new peak detection method for a portable device, which know as modified automatic threshold peak detection (M-ATPD). M-ATPD evolves out of ATPD with a focus on reducing computational time. The proposed method replaces the clustering threshold calculation in ATPD with a standard deviation threshold calculation. M-ATPD reduces computational time by 2 times faster compared to ATPD for control signal and 8.65 times faster compared to ATPD for raw biosignals. Modified ATPD also shows a slight improvement in terms of detection error, with a decrease of about 6.66% to 13.33% in peak detection of noise signals. Modified ATPD successfully fixes the error of peak detection on pulse control signals associated with ATPD.  For raw biosignals, in total M-ATPD achieved 19.41% lower detection error compare to ATPD

    Performance analysis of low-complexity welch power spectral density for automatic frequency analyser

    Get PDF
    The aim of this paper is to investigate the performance of the Low Complexity Welch Power Spectral Density Computation (PSDC). This algorithm is an improvement from Welch PSDC method to reduce the computational complexity of the method. The effect of the sampling rate and the input frequency toward to accuracy of frequency detection is being evaluated. From the experiment results, sampling rate nearest to the twice of the input frequency provides the highest accuracy which achieved 99%. The ability of the algorithm to perform complex signal also has been investigated

    Heart-rate Monitoring System Design and Analysis Using a Nios II Soft-core Processor

    Get PDF
    The heart rate of a person is able to tell whether they are healthy. A heart-rate monitoring device is able to measure or record the heart rate of a person in real time, whether it is an electrocardiogram (ECG) or a photoplethysmogram (PPG). In this work, a microprocessor system loaded with a heart-rate monitoring algorithm is implemented. The microprocessor system is the Nios II processor system, which interfaces with an analogue-to-digital converter (ADC) and a pulse sensor. A beat-finding algorithm is used in the microprocessor system for heart rate measurement. An experiment is carried out to analyse the functionality of the microprocessor system loaded with the algorithm. The results show that the detected heart rate is in the range of the average human being’s heart rate. The signal flow within the microprocessor system is observed and analysed using SignalTap II from Quartus’ software. Based on a power analysis report, the proposed microprocessor system has a total power dissipation of around 218.26 mW

    Effect of pH and salt concentration on protein solubility of slaughtered and non-slaughtered broiler chicken meat

    Get PDF
    This study examined the influence of pH and salt concentration on the protein solubility of slaughtered and non-slaughtered broiler chicken meat. Three types of salt (NaCl, Na2SO4, and (NH4)2SO4), five different pH levels (5.0, 6.0, 7.0, 8.0 and 9.0) and five salt concentrations (0.4, 0.8, 1.2, 1.6, and 2.0 M) were examined. Each type of salt showed distinctive activities for slaughtered and non-slaughtered meat protein solubility. Soluble protein concentration increased as pH increased (p<0.05) from pH5.0 to 8.0 and decreased from pH8.0 to 9.0. It was also observed that protein solubility increased as the salt concentration increased. Protein solubility significantly increased (p<0.05) in the non-slaughtered meat compared to the slaughtered meat at pH8.0 for Na2SO4 at 1.2 M

    Reviewed immunosensor format using nanomaterial for tungro virus detection

    Get PDF
    Recently, nanomaterial based biosensor application has drawn a lot attention among researchers because of specialty to enhance the sensor signal for increasing the sensitivity for detecting and identification of pathogen, viruses and toxic compound in controlling plant disease outbreak effectively. Rice tungro disease (RTD) causes a major problem in rice production and also will effect in the economic loss in the country. Therefore, early detection system is needed to monitor the disease at the early stage of the infection for preventing the disease outbreak in planting area. Lastly, this paper will discuss the current findings in rapid diagnostics using immunosensors technologies with nanomaterial application in enhancing the sensor signal for increasing the detection sensitivity

    Comparative study between ELISA and surface plasmon resonance (SPR) for rice tungro disease detection

    Get PDF
    Rice tungro disease (tungro) is one of the most damaging diseases of rice in South and Southeast Asia. This disease is caused by dual infections from rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). Both are transmitted by green leaf hoppers (GLH).This disease make serious loss of income to farmers when their crops are affected with an approximately 5-10% annual losses of rice yield in Asia was affected by rice tungro disease. This disease contributes to serious loss of income to farmers and also accounts for an approximately 5-10% annual loss of rice yield in Asia.Immunosensors based Surface Plasmon Resonance (SPR) and ELISA that used specific antigen-antibody reaction format have become a promising tool for the quantification of viruses. However both method need to compare which is to be used to determine the antigen with highly sensitive, specific, rapid, and label free detection for the analysis

    A novel disposable biosensor based on SiNWs/AuNPs modified-screen printed electrode for dengue virus DNA oligomer detection

    Get PDF
    In this study, a disposable screen-printed gold electrode (SPGE) utilized of silicon nanowires (SiNWs) and gold nanoparticles as sensing material was fabricated for detection of DNA oligomers related to dengue virus. Firstly, SiNWs/AuNPs-SPGE was developed by the dispersion of SiNWs in 3-Aminopropyltriethoxysilane (APTES, 0.5 %) onto bare SPGE. Secondly, the AuNPs decoration on SiNWs-SPGE surface was functionalized using dithiopropionic acid (DTPA) through a self-assembly monolayer (SAM) technique. The electrochemical response of methylene blue (MB) as a redox indicator towards synthetic DNA oligomer after hybridization on SiNWs/AuNPs-SPGE was recorded by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The results demonstrated that the reduction peak current of MB was significantly decreased after DNA hybridization process. In addition, the developed biosensor showed a good storage stability and could achieve a linear range of 1.0 × 10-11-1.0 × 10-7 M (R= 0.98) with the detection limit of 1.63× 10-12 M

    Performance comparison of image normalisation method for DNA microarray data

    Get PDF
    Normalisation is a process of removing systematic variation that affects measured gene expression levels in microarray experiment. The purpose is to get a more accurate DNA microarray result by deleting the systematic errors that may have occurred when making the DNA microarray slid. In this paper, four normalisation methods of Global, Lowess, Quantile and Print-tip are discussed, tested and their final results compared in the form of Matrixes and graphs. Ideal and real microarray slides have been used for this project. It was found that the Print-tip normalisation method showed the closest results to the real result for an ideal microarray slide and it has a straight median line final graph. The Print-tip normalisation method uses more than one normalization factor that is divided among intervals which are dependent on the values of the addition of red and green logarithm

    Design and fabrication of silicon nanowire based sensor

    Get PDF
    This paper reports the process development of silicon nanowires sensor requires both the fabrication of nanoscale diameter wires and standard integration to CMOS process. By using silicon-on-insulator (SOI) wafer as a starting material, the nanowires is fabricated using a top-down approach which involved Scanning Electron Microscope based Electron Beam Lithography method. The silicon nanowires are well developed with the smallest dimension is 65nm in width. The effect of line width and exposure dose on the pattern structure is investigated experimentally using the negative photoresist ma-N2403 for EBL. The exposure doses for the resist layer are varied in the range of 50µC/cm2 to 180µC/cm2 at 20 kV accelerating voltage with a beam current of 0.075nA. The nanowires resist masks are well developed with dimension less than 100 nm in width for the dose exposure parameters of 80µC/cm2, 100µC/cm2 and 120µC/cm2. Subsequently, the two metal electrodes which are designated as source and drain are fabricated on top of individual nanowire using conventional lithography process. Morphological, electrical and chemical characteristics have been proposed to verify the outcome of the fabricated device. Finally, the fabricated device is performed as pH level detection. Three types of standard aqueous pH buffer buffer solutions which are pH 4, pH 7 and pH 10 are used to test the electrical response of the device. The SiNWs sensor show the highest resistance value for pH 4 and the lowest resistance value for pH 10. In terms of sensitivity, the device with smaller nanowire is found to be more sensitive than larger nanowire as a result of the high surface-to-volume ratio
    corecore